在學習機器學習算法的過程中,我們經(jīng)常需要數(shù)據(jù)來驗證算法,調(diào)試參數(shù)。但是找到一組十分合適某種特定算法類型的數(shù)據(jù)樣本卻不那么容易。還好numpy, scikit-learn都提供了隨機數(shù)據(jù)生成的功能,我們可以自己生成適合某一種模型的數(shù)據(jù),用隨機數(shù)據(jù)來做清洗,歸一化,轉(zhuǎn)換,然后選擇模型與算法做擬合和預測。下面對scikit-learn和numpy生成數(shù)據(jù)樣本的方法做一個總結(jié)。

1. numpy隨機數(shù)據(jù)生成API

    numpy比較適合用來生產(chǎn)一些簡單的抽樣數(shù)據(jù)。API都在random類中,常見的API有:

    1) rand(d0, d1, ..., dn) 用來生成d0xd1x...dn維的數(shù)組。數(shù)組的值在[0,1]之間

    例如:np.random.rand(3,2,2),輸出如下3x2x2的數(shù)組

array([[[ 0.49042678,  0.60643763],
        [ 0.18370487,  0.10836908]],

       [[ 0.38269728,  0.66130293],
        [ 0.5775944 ,  0.52354981]],

       [[ 0.71705929,  0.89453574],
        [ 0.36245334,  0.37545211]]])  

    2) randn((d0, d1, ..., dn), 也是用來生成d0xd1x...dn維的數(shù)組。不過數(shù)組的值服從N(0,1)的標準正態(tài)分布。

    例如:np.random.randn(3,2),輸出如下3x2的數(shù)組,這些值是N(0,1)的抽