對于想深入了解線性回歸的童鞋,這里給出一個完整的例子,詳細學完這個例子,對用scikit-learn來運行線性回歸,評估模型不會有什么問題了。

1. 獲取數(shù)據(jù),定義問題

    沒有數(shù)據(jù),當然沒法研究機器學習啦。:) 這里我們用UCI大學公開的機器學習數(shù)據(jù)來跑線性回歸。

    數(shù)據(jù)的介紹在這: http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant

    數(shù)據(jù)的下載地址在這: http://archive.ics.uci.edu/ml/machine-learning-databases/00294/

    里面是一個循環(huán)發(fā)電場的數(shù)據(jù),共有9568個樣本數(shù)據(jù),每個數(shù)據(jù)有5列,分別是:AT(溫度), V(壓力), AP(濕度), RH(壓強), PE(輸出電力)。我們不用糾結(jié)于每項具體的意思。

    我們的問題是得到一個線性的關(guān)系,對應PE是樣本輸出,而AT/V/AP/RH這4個是樣本特征, 機器學習的目的就是得到一個線性回歸模型,即:

    

延伸閱讀

學習是年輕人改變自己的最好方式-Java培訓,做最負責任的教育,學習改變命運,軟件學習,再就業(yè),大學生如何就業(yè),幫大學生找到好工作,lphotoshop培訓,電腦培訓,電腦維修培訓,移動軟件開發(fā)培訓,網(wǎng)站設計培訓,網(wǎng)站建設培訓學習是年輕人改變自己的最好方式