TensorFlowSharp入門使用C#編寫TensorFlow人工智能應(yīng)用學(xué)習(xí)。
TensorFlow簡(jiǎn)單介紹
TensorFlow 是谷歌的第二代機(jī)器學(xué)習(xí)系統(tǒng),按照谷歌所說,在某些基準(zhǔn)測(cè)試中,TensorFlow的表現(xiàn)比第一代的DistBelief快了2倍。
TensorFlow 內(nèi)建深度學(xué)習(xí)的擴(kuò)展支持,任何能夠用計(jì)算流圖形來表達(dá)的計(jì)算,都可以使用TensorFlow。任何基于梯度的機(jī)器學(xué)習(xí)算法都能夠受益于TensorFlow的自動(dòng)分化(auto-differentiation)。通過靈活的Python接口,要在TensorFlow中表達(dá)想法也會(huì)很容易。
TensorFlow 對(duì)于實(shí)際的產(chǎn)品也是很有意義的。將思路從桌面GPU訓(xùn)練無縫搬遷到手機(jī)中運(yùn)行。
示例Python代碼:
import tensorflow as tfimport numpy as np# Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3x_data = np.random.rand(100).astype(np.float32) y_data = x_data * 0.1 + 0.3# Try to find values for W and b that compute y_data = W * x_data + b# (We know that W should be 0.1 and b 0.3, but TensorFlow will# figure that out for us.)W = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) b = tf.Variable(tf.zeros([1])) y = W * x_data + b# Minimize the mean squared errors.loss = tf.reduce_mean(tf.square(y - y_data)) optimizer = tf.train.GradientDescentOptimizer(0.5) train = optimizer.minimize(loss)# Before starting, initialize the variables. We will 'run' this first.init = tf.global_variables_initializer()# Launch the graph.sess =